CAS NO: | 1227675-50-4 |
包装 | 价格(元) |
10mg | 电议 |
50mg | 电议 |
Cas No. | 1227675-50-4 |
化学名 | (R)-1-(2-imino-2,5,6,7-tetrahydro-1H-benzo[6,7]cyclohepta[1,2-d]pyrimidin-4-yl)pyrrolidin-3-amine dihydrochloride |
Canonical SMILES | N[C@]1([H])CCN(C(C2=C(N3)C4=CC=CC=C4CCC2)=NC3=N)C1.Cl.Cl |
分子式 | C17H21N5.2HCl |
分子量 | 368.31 |
溶解度 | <36.83mg/ml in Water;<36.83mg/ml in DMSO |
储存条件 | Store at -20℃ |
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while. |
Shipping Condition | Evaluation sample solution : ship with blue ice All other available size: ship with RT , or blue ice upon request |
产品描述 | A 943931, is an H4R (one of histamine receptor subtypes) antagonist [1] with high affinities to H4Rs of human (Ki = 5 nM), rat (Ki = 4 nM) and mouse (Kb = 6 nM) [2]. H4R is one of 4 known G-protein-coupled receptors (H1, H2, H3 and H4 receptors) of histamine for histamine to mediate its physiological functions [3]. HMC-1 cells incubated with A 943931 at a concentration of 300 nM for 20 min inhibited the increase in ALDH2 activity induced by H4R [4]. In microglia, A 943931 at a concentration of 10 μM partially abolish the release of TNF-α and IL-6 induced by histamine at a concentration of 0.1 μg/ml [5]. In bone marrow-derived mast cells, A 943931 inhibited the shape change induced by histamine (IC50 = 0.38 μM) [6]. Intraperitoneal administration of A 943931 at a dose of 33 μmol/kg potently inhibited itch induced by H4R agonist in mice [6]. In several preclinical models, H4R had been shown to be linked to inflammation [7]. A 943931 had excellent antagonistic activity both in vivo and in vitro across multiple species, displayed good oral bioavailability (90%) and excellent metabolic stability. This compound displays good efficacy in rat pain models and is a good anti-inflammatory agent in mice [8]. A 943931 has an in vivo oral bioavailability of 34% and a half-life of 2.6 h in rats [2]. A 943931 efficaciously reduced acute inflammatory pains induced by formalin in the flinch model and by carrageenan in mechanical and thermal hyperalgesia models in rats [9]. References: |