您好,欢迎来到化工原料网! [登录] [免费注册]
化工原料网
位置:首页 > 产品库 > MPP+ Iodide
立即咨询
咨询类型:
     
*姓名:
*电话:
*单位:
Email:
*留言内容:
请详细说明您的需求。
*验证码:
 
MPP+ Iodide
本产品不向个人销售,仅用作科学研究,不用于任何人体实验及非科研性质的动物实验。
MPP+ Iodide图片
包装与价格:
包装价格(元)
50mg电议
100mg电议
250mg电议

产品介绍

MPP+ 碘化物是神经毒素 MPTP 的有毒代谢物,通过选择性破坏黑质中的多巴胺能神经元,在动物模型中引起帕金森氏病症状。

Cell lines

Bv-2 cells

Preparation Method

The cell experiment took Bv-2 cells as the object, set the MPP+ Iodidefinal concentration of 0.1, 0.2, 0.5 mmol as the interference concentration, and after 24 h of culture, Western blot detected the expression level of NLRP3 protein in cells, and selected the optimal concentration.

Reaction Conditions

0.1, 0.2, 0.5 mmol, 24h

Applications

After 0.1/0.2/0.5 mmol MPP+ Iodide intervention cells for 24 h, MPP+ Iodideactivated cells expressed NLRP3 and MIF protein significantly higher than in the control group. 0.2 mmol MPP+ Iodideis the optimal concentration of NLRP3 inflammasomes that activate Bv-2.

Animal models

Male Sprague–Dawley rats

Preparation Method

Four days after siRNA infusion, rats were re-anesthetized for intranigral infusion of MPP+ Iodide(3 μg/μl) at a rate of 0.2 μl/min. After the surgery, rats recovered from anesthesia and were placed in home cages for the indicated times.

Dosage form

3 μg/μl;intranigral infusion

Applications

The results shown intranigral infusion of MPP+ Iodideincreased HO-1 levels in a time-dependent manner; significant HO-1 elevation was observed 24 h to 7 d after MPP+ Iodideinfusion.

文献引用
产品描述

MPP+ Iodide (1-methyl-4-phenylpyridinium iodide) is a toxic metabolite of the neurotoxin MPTP, and has successfully induced Parkinson-like syndromes in an in vitro model by selectively destroying dopaminergic neurons in substantia nigra.[1]

In vitro efficacy test it shown that when SH-SY5Y cells were exposed to MPP+ Iodidein the range of 1–100 M for 3–24 h, MPP+ Iodide exhibited a dose-time dependent cytotoxicity.[1]In vitro experiment it indicated that SH-SY5Y cells were treated with 0.2, 0.4, 0.8, or 1.0 mM MPP + for 24 h, MPP+ Iodide could significantly reduce cell viability in a dose-dependent manner.[2]In vitro, treatment with 1-7.5 mM of MPP+ Iodide dose-dependently increased the neurodegeneration in the L1 larvae of BZ555 worms. The percentages of worms exhibiting neurodegeneration after treatment with 1 mM, 2.5 mM, 5 mM and 7.5 mM MPP+ Iodide were 24%, 27%, 67% and 87%, respectively.[3]Both TSM1 and primary neurons were treated with 0.1 to 2 mM of MPP+ Iodide induced neuronal cell death in a concentration dependent manner in vitro. TSM1 cells and primary neurons were treated with 400 μM MPP+ Iodide decreased by 60% and 80% the cell viability as compared to the control, respectively.[4]In vitro to test the role of MAC1 in MPTP/MPP+-induced neurotoxicity, neuron-glia cultures were treated with 0.125, 0.25, or 0.5 μM of MPP+ Iodidefound that MPP+-induced DAergic neurotoxicity in neuron-glia cultures was attenuated in the absence of MAC1.[5]

In vivo study indicated that intranigral infusion of 3 μg/μl MPP+ Iodideinduced oxidative injury in nigrostriatal dopaminergic system of rat brain; and autophagy is pro-death in the MPP+-induced oxidative injury.[6]

References:
[1].Reudhabibadh R, et al. Suppressing Cdk5 Activity by Luteolin Inhibits MPP+-Induced Apoptotic of Neuroblastoma through Erk/Drp1 and Fak/Akt/GSK3β Pathways. Molecules. 2021 Feb 28;26(5):1307.
[2].Yan J, et al. Artemisinin attenuated oxidative stress and apoptosis by inhibiting autophagy in MPP+-treated SH-SY5Y cells. J Biol Res (Thessalon). 2021 Feb 25;28(1):6.
[3].Anjaneyulu J, et al. Differential effect of Ayurvedic nootropics on C. elegans models of Parkinson's disease. J Ayurveda Integr Med. 2020 Oct-Dec;11(4):440-447.
[4].Petit-Paitel A, et al. Involvment of cytosolic and mitochondrial GSK-3beta in mitochondrial dysfunction and neuronal cell death of MPTP/MPP-treated neurons. PLoS One. 2009;4(5):e5491.
[5].Hu X, et al. Macrophage antigen complex-1 mediates reactive microgliosis and progressive dopaminergic neurodegeneration in the MPTP model of Parkinson's disease. J Immunol. 2008 Nov 15;181(10):7194-204.
[6].Hung KC, et al. Roles of autophagy in MPP+-induced neurotoxicity in vivo: the involvement of mitochondria and α-synuclein aggregation. PLoS One. 2014 Mar 19;9(3):e91074.