CAS NO: | 2115701-93-2 |
规格: | ≥98% |
包装 | 价格(元) |
5mg | 电议 |
10mg | 电议 |
25mg | 电议 |
50mg | 电议 |
100mg | 电议 |
250mg | 电议 |
500mg | 电议 |
Molecular Weight (MW) | 437.95 |
---|---|
Formula | C22H20ClN5OS |
CAS No. | 2115701-93-2 [(+)-JQ1 PA]; |
Storage | -20℃ for 3 years in powder form |
-80℃ for 2 years in solvent | |
Solubility (In vitro) | DMSO: 10 mM |
Water: | |
Ethanol: | |
Synonyms | (+)-JQ-1 PA; (+)-JQ 1 PA; (+)-JQ1 PA; (+)-JQ1 propargyl amide |
SMILES Code | O=C(NCC#C)C[C@H]1C2=NN=C(C)N2C3=C(C(C)=C(C)S3)C(C4=CC=C(Cl)C=C4)=N1 |
In Vitro | In vitro activity: (+)-JQ1 PA (also known as (+)-JQ1 propargyl amide) is a novel propargyl amide derivative of (+)-JQ1 with IC50 of 10.4 nM for Bromodomain and extra-terminal (BET). It was created as a functionally conserved compound that is amenable to click chemistry and can be used as molecular probes in vitro and in vivo. (+)-JQ1 is a potent and highly specific BET (Bromodomain and extra terminal domain) bromodomain inhibitor, with IC50 of 77 nM and 33 nM for BRD4(1/2) in enzymatic assays. (–)-JQ1 shows no significant interaction with any bromodomain. Besides, (–)-JQ1 enantiomer is comparatively inactive in nuclear protein in testis (NUT) midline carcinoma (NMC). (+)-JQ1 has high specificity for BET in that it only binds to bromodomains of the BET family, but not to any bromodomains of non-BET family. (+)-JQ1 has potential antineoplastic activity against various cancers such as MM (Multiple myeloma), pancreatic ductal adenocarcinoma and ovarian cancer etc. Its mechanism of action is to inhibit c-MYC and upregulate p21. (+)-JQ1 has been used as a chemical probe to investigate the role of BET bromodomains in the transcriptional regulation of oncogenesis. Kinase Assay: (+)-JQ1 is a potent and highly specific BET (Bromodomain and extra terminal domain) bromodomain inhibitor, with IC50 of 77 nM and 33 nM for BRD4(1/2) in enzymatic assays. Cell Assay: Cells are seeded into white, 384-well microtiter plates at 500 cells per well in a total volume of 50 μL media. The 797, TT and TE10 cells are grown in DMEM containing 1% penicillin/streptomycin and 10% FBS. The Per403 cells are grown in DMEM containing 1 % penicillin/streptomycin and 20% FBS. Patient-derived NMC 11060 cells are grown in RPMI with 10% FBS and 1% penicillin/streptomycin. (+)-JQ1 is delivered to microtiter assay plates by robotic pin transfer. Following a 48 hours incubation at 37℃, cells are lysed and wells are assessed for total ATP content using a commercial proliferation assay. Replicate measurements are analyzed with respect to dose and estimates of IC50 are calculated by logistic regression (GraphPad Prism). |
---|---|
In Vivo | (+)-JQ1 (50 mg/kg) inhibits tumors growth in mice with NMC 797 xenografts. (+)-JQ1 (50 mg/kg) results in effacement of NUT nuclear speckles in mice with NMC 797 xenografts, consistent with competitive binding to nuclear chromatin. (+)-JQ1 (50 mg/kg) induces strong (grade 31) keratin expression in NMC 797 xenografts. (+)-JQ1 (50 mg/kg) promotes differentiation, tumor regression and prolonged survival in mice models of NMC xenografts. (+)-JQ1 (50 mg/kg) results in a significant prolongation in overall survival of SCID-beige mice orthotopically xenografted after intravenous injection with MM.1S-luc+ cells compared to vehicle-treated animals. (+)-JQ1 (50 mg/kg i.p.) leads to a highly significant increase in survival of mice bearing Raji xenografts. |
Animal model | Mice bearing NMC 797 xenografts for (+)-JQ1 |
Formulation & Dosage | 1. Dissolved in 5% dextrose; 50 mg/kg; i.p. injection; Nature. 2010 Dec 23;468(7327):1067-73; 2. Dissolved in 10% DMSO and 90% of a 10% 2-hydroxypropyl-β-cyclodextrin solution; Leukemia. 2017 Oct;31(10):2037-2047.; 3. Dissolved in 1% DMSO+5% Glucose+ddH2O; Cell. 2018 Sep 20;175(1):186-199.e19.; 4. Dissolved in 20% hydroxypropyl-β-cyclodextrin, 5% DMSO, 0.2% Tween-80 in saline; Mol Cancer Ther. 2016 Jun;15(6):1217-26.; 5. Dissolved in 1:1 propylene glycol:water; J Biol Chem. 2016 Nov 4;291(45):23756-23768.; 6. Dissolved in 5% DMSO in 10% 2-hydroxypropyl-β-cyclodextrin solution; Cancer Lett. 2017 Aug 28;402:100-109. |
References | Science. 2017 Jun 30;356(6345):1397-1401; Nature. 2010 Dec 23;468(7327):1067-73; Cell. 2011 Sep 16;146(6):904-17; Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16669-74. |