您好,欢迎来到化工原料网! [登录] [免费注册]
化工原料网
位置:首页 > 产品库 > Mibefradil(Ro405967)
立即咨询
咨询类型:
     
*姓名:
*电话:
*单位:
Email:
*留言内容:
请详细说明您的需求。
*验证码:
 
Mibefradil(Ro405967)
本产品不向个人销售,仅用作科学研究,不用于任何人体实验及非科研性质的动物实验。
Mibefradil(Ro405967)图片
CAS NO:116644-53-2
规格:≥98%
包装与价格:
包装价格(元)
100mg电议
250mg电议
500mg电议

产品介绍
理化性质和储存条件


Name: Mibefradil
CAS#: 116644-53-2 (free base)
Chemical Formula: C29H38FN3O3
Exact Mass: 495.2897
Molecular Weight: 495.6394
Storage-20℃ for 3 years in powder form
-80℃ for 2 years in solvent
Technical InformationSynonym: Ro 405967; Ro-40-5967; Ro405967; Ro40-5967; Ro-405967; Ro 40-5967; trade name: Posicor.
Chemical Name: (1S,2S)-2-(2-((3-(1H-benzo[d]imidazol-2-yl)propyl)(methyl)amino)ethyl)-6-fluoro-1-isopropyl-1,2,3,4-tetrahydronaphthalen-2-yl 2-methoxyacetate
InChi Key: HBNPJJILLOYFJU-VMPREFPWSA-N
InChi Code: InChI=1S/C29H38FN3O3/c1-20(2)28-23-12-11-22(30)18-21(23)13-14-29(28,36-27(34)19-35-4)15-17-33(3)16-7-10-26-31-24-8-5-6-9-25(24)32-26/h5-6,8-9,11-12,18,20,28H,7,10,13-17,19H2,1-4H3,(H,31,32)/t28-,29-/m0/s1
SMILES Code: O=C(O[C@@]1(CCN(CCCC2=NC3=CC=CC=C3N2)C)[C@@H](C(C)C)C4=C(C=C(F)C=C4)CC1)COC
实验参考方法
Target

IC50: 2.7 μM (T-type calcium channel); 18.6 μM (L-type calcium channel)[1]

In VitroMibefradil inhibits reversibly the T- and L-type currents with IC50 values of 2.7 and 18.6 μM, respectively. The inhibition of the L-type current is voltage-dependent, whereas that of the T-type current is not. Ro 40-5967 blocks T-type current already at a holding potential of -100 mV[1] At a higher concentration (20 μM), Mibefradil reduces the amplitude of excitatory junction potentials (by 37±10 %), slows the rate of repolarisation (by 44±16 %) and causes a significant membrane potential depolarisation (from –83±1 mV to –71±5 mV). At a higher Mibefradil concentration (20 μM) there is significant membrane potential depolarisation and a slowing of repolarisation. These actions of Mibefradil are consistent with K+ channel inhibition, which has been shown to occur in human myoblasts and other cells[2].
In VivoThe hearing thresholds of the 24-26 week old C57BL/6J mice differed following the 4-week treatment period. The hearing threshold at 24 kHz is significantly decreased in the Mibefradil-treated and benidipine-treated groups compared with the saline-treated group (P<0.05)[3]. Compared with the saline-treated group, rats receiving Mibefradil or Ethosuximide show significant lower CaV3.2 expression in the spinal cord and DRG[4].
Animal ExpMice[3] A total of 30 male C57BL/6J mice (age, 6-8 weeks) are randomized into three groups for the detection of three calcium channel receptor subunits α1G, α1H and α1I, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). In addition, a further 30 C57BL/6J male mice (age, 24-26 weeks) are allocated at random into three treatment groups: Saline, Mibefradil and benidipine. Each group is subjected to auditory brainstem recording (ABR) and distortion product otoacoustic emission (DPOAE) tests following treatment. Mibefradil and benidipine are dissolved in physiological saline solution. A preliminary experiment led to the selection of dosages of 30 mg/kg/day Mibefradil and 10 mg/kg/day Benidipine. The drugs are administered to the mice by gavage for four consecutive weeks. Rats[4] Male Sprague-Dawley rats (200-250 g) are used for right L5/6 SNL to induce neuropathic pain. Intrathecal infusion of saline or TCC blockers [Mibefradil (0.7 μg/h) or Ethosuximide (60 μg/h)] is started after surgery for 7 days. Fluorescent immunohistochemistry and Western blotting are used to determine the expression pattern and protein level of CaV3.2. Hematoxylin-eosin and toluidine blue staining are used to evaluate the neurotoxicity of tested agents.
References

[1]. The Ca(++)-channel blocker Ro 40-5967 blocks differently T-type and L-type Ca++ channels. J Pharmacol Exp Ther. 1994 Dec;271(3):1483-8.

[2]. The sources and sequestration of Ca(2+) contributing to neuroeffector Ca(2+) transients in the mouse vas deferens. J Physiol. 2003 Dec 1;553(Pt 2):627-35.

[3]. Protection of the cochlear hair cells in adult C57BL/6J mice by T-type calcium channel blockers. Exp Ther Med. 2016 Mar;11(3):1039-1044.

[4]. Chronic intrathecal infusion of T-type calcium channel blockers attenuates CaV3.2 upregulation in nerve-ligated rats. Acta Anaesthesiol Taiwan. 2016 Oct 17. pii: S1875-4597(16)30071-6.